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Phases

e A phase is defined as a macroscopically homogeneous body of
matter.

Ex. Three forms of copper—solid, liquid, and gas—constitutes a
separate and distinct phases.

e Each crystal structure defines a separate phase, so that
polymorphic metals can exist in more than one solid phases.

Ex. Fe

Table 10.1 Phases of Pure Iron

Stable Temperature Identification
Range Form of Symbol of
K Matter Phase Phase
Above 3013 gaseous gas gas
1812 to 3013 liquid liquid liquid
1673 to 1812 solid body-centered cubic (delta)
1183 to 1673 solid face-centered cubic (gamma)
Below 1183 solid body-centered cubic (alpha)




definitions

Binary alloys: two component systems, are mixtures of
two metallic elements. Ex. Cu-Zn

Ternary alloys: three component systems, mixtures of
Ex. Ag-Ni-Zn
System: as used in the sense usually employed in

thermodynamics, or physical chemistry, is an isolated

three metallic elements.

body of matter.
Component: often the metallic elements that ma
the system.
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Ex. Pure copper or pure nickel are by themselves one-
component systems, while alloys formed by mixing are two
component systems.

Steels are normally considered to be two-component systems
consisting of iron and iron carbide(Fe;C), a compound.

Terminal solid solution: phases based on the crystal structures
of the components.

Ex. Binary alloys of copper and silver.

(copper acts as the solvent, with silver the solute; another in
which silver is the solvent and copper the solute)

Intermediate phases: crystal structures different from those of
either component may form at certain ratios of the two
components. They do not have a fixed composition (ratio of the
components) and appear over a range of compositions.

Ex. Intermediate solid solution: Brass (copper(53-50%)-zinc(47-
50%)), intermetallic compound: iron-carbide, Fe;C.



In a system, continuous (matrix) phase:the phase that
surrounds the other phase ; discontinuous (dispersed) phase:
the phase that is surrounded.

The phases in alloy systems are usually solutions — either liquid,
solid or gaseous.
The free energy of a solution is a thermodynamic property of
the solution, or a variable that depends on the thermodynamic
state of the solution.

G =HU) +PV-TS
Variables: temperature(T), pressure(P), volume(V), enthalpy(H),
entropy(S), and the free energy(G).

In a one-component system of a given mass and phase, if the
two variables temperature and pressure are specified, the
volume of the system will have a definite fixed value. At the
same time, its free energy, enthalpy, and other properties will
also have values that are fixed and determinable.



Ex. In a three-component system, the mole fraction are:

n n n
N, = A Ng = B Nc = ¢
Na+Ng +Ne Np +Ng +Ng Na+Ng +Nc

N, Ng N :are the mole fractions; n,,ng,nc :are the actual number

of moles of the A, B, and C components.

By definition of the mole fraction, then:

There are only two independent mole fractions in a ternary
system.

Most metallurgical processes occur at constant temp. and
pressure, the state of a solution can be considered to be a
function of its composition. Such as free energy can be
considered a function of only the composition variables. So, the
total free energy (G) of a solution is :

G =G(np,Ng,Nc) (temp. and pressure constant)

By partial differentiation, the differential of the free energy of a
single solution of three components at constant pressure and

temperature is: oG oG oG

anA ong ong

anC



Where the partial derivatives, such as G/dn, , represent the
change in the free energy when only one of the components is
varied by an infinitesimal amount.

For a very small variation of component A, while the amounts of
the components B and C in the solution are maintained constant,
we have  dG oG

dn, on,

The partial derivatives are the partial mole free energies of the
solution and are designed by the symbols G,,G;,G.

dG - €AdnA +§BdnB + gcdnc

The total free energy of a solution composed can be obtained by
integrating the upper equation. The partial-molar free energies are
functions of only the composition of the solution (at constant
temperature and pressure), they will also be constant during the
formation of the solution.

G — nAGA + HBGB + ncéc



o Let us differentiate upper equation completely to obtain

e But we have already seen that the derivative of the free energy

IS — — —

NAdG, +NgdGg +N-dG. =0

..... for three-componentsolution
and, n,dG, +ngdGg +n:dG. +nydGy =0

..... for four components

e The significance of these relationships in explaining the

phenomena of polyphase systems in equilibrium.




Equilibrium between two phases

e A binary (two-component) system with two phases in equilibrium
will now be considered.

e Total energy: a phase G* =n4Gg +n2G¢

B phase G’ =nyG[ +nfGJ

* A small quantity (dn,) of component A: a phase - transferred to
- B phase

dnA Binary system|4G — dG% + dG” = Ga(~dn,)+GA(dn,)
— dG = (G - Ga)dn,




« Because we assumed the two phases are at
equilibrium. The variation in the free energy for any
Infinitesimal change inside the system - the shift of
a small amount of component A from one phase to
the other must be zero.

4G = (G —Ga)dn, =0
. GA=Gh

o =
same manner Gg =Gsg
for M componentsand x phase in equilibriu m

GA=GA=Gh=...=Gh
Gt =Gp =Gp =....=Gb
Ge =Ge =Ge =....=G¢
M

~a =P =7 s



Number of phases in an alloy system

One-component systems
ex. white tin <&-> gray tin

B phase o phase
body-centered diamond cubic
tetragonal large volume expansion (27%)

upper 286.2K below 286.2K

30

20 -

&
10+

A1 . i | | 1
0 50 100 150 200 250
Temperature, K

I\
300



Gibbs free energy of a pure substanceis:G=H-TS

In a reversible process at constant pressure, the heat exchanged
between the system and its surrounding equals the enthalpy
change of the system.

q=dH = [C,dT
q :asmall transferof heat intoor out of thesystem

dH :accompanying enthalpychange of thesystem
C, :thespecific heat at a constantpressure

T
—=H=H,+ ondT

Simlarly, a reversible process for entropy

dq deT T deT IT deT

dS =
T o T

:>S=so+j
o T

(0K=>S, = 0)



AG = 1632 J/mol-

The free energy of both the
white and gray tin:

Free energy of white tin

Free energy

Free energy, in Joules per mole

of gray tin
a a T a (T ngT
70 o T AG=0
i T CPdT | ! | : | ,
G =HF +| CPAT -T P 0 50 100 150 200 250 300
0 Jo P Jo T Temperature, K

286.2K = AG = 0 (gray and white tinare coexists)

below 286.2K=> gray tinhas thelowest freeenergy
= gray tinis themost stable phase

above 286.2K= white tinhas thelowest freeenergy
= white tinis themost stable phase

T T= G | (T Stermis importancein thefree energy equation)
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(AH) 286 K

500

250
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Temperoture K

Joules per mole
O

-500 |-
} 286 K

-1000 |

AG = AH —TAS
T T
AH =HY + | CldT-HE - | cgaT
0
TCHdT - TCodT

o T
at thetemperatue of transformation (286.2K)

AH = TAS = AG =0

and TAS = TJ

the closest packing structure
—>More closely bound phase

More open structure - the
greatest entropy of vibration

High-T stable phase is BCC;
Low-T phase has a close-packed
structure (FCC, HCP)

Ex. L1, Na, Ca, Ti....



Two-component systems
-- single phase binary systems

Ideal solutions: no tendency for either A atoms or for B atoms to
cluster together or for opposite types of atoms to attract each other.

freeenergy of mixing N ymolesof Aatomsand Ngmolesof B atoms
G =GAN, +GINg +TAS,,
Gg . freeenergy per mole of pure A

Gy : freeenergy per moleof pure B
T :theabsolute temperatue
AS,, :theentropyof mixing

G=GAN,+G3Ng +RT(N,INN, +NgInNg)
G=N,(GR+RTINN,)+Ngz(Ga +RTInNg)
if G,=Ga+RTInN,
Gg =Gp +RTInN,
AG, =G, -G2=RTInN,
AGg =Gz —-Gg =RTInNg
AG ,andAGyg : thequantities of theincrease in free energy when onemole (A or B)
Is dissolved at constant €Emperaturein a verylarge quantity of thesolution.



1.0

Nonideal solutions: in most liquid and solid solutions, no preference
either for their own or for their opposites.

AG, =RTIna,
AGg =RTInag
a, is the activity of component A:
indicate the extent to which a solution |deal solution :
departs from an ideal solution. AG; = RTIn0.70=-0.356RT

nonideal solution :

0.80
0.70

aa or ”B

1.0

AG, =RTIn0.80=-0.223RT
positivedeviation:
a, >N, and ag > Ng
AG; < AG,
attractionbetween same atoms
> attractionbetween dissimilar atoms

a4 0r Ny

oy =0 If a, andag =1= two components

Composition Composition were completelyinsoluble
(A} | (B)
Positive deviation Negative deviation ~ negativedeviation:

ap <N, and ag < Nj

AG; > AG,

attractionbetween same atoms

< attractionbetween dissimilar atoms



o Activity coefficients: the ratios of the activities to their

respective atom fractions. . .
A B
=—" and =

VA N, VB N,

e The free energy of a mole of ideal solution should given by:

G=N,Ga+NgGa+RT(N,INN,+NgInNg)

N G2 + NgGp : freeenergy of one totalmole of thetwo
components(not mixed)

RT(N,InN, +NgInNg):thecontribution of theentropy

of mixing tothefreeenergy of thesolution,
and directly proportioral tothetemperatue

e The homogeneous solid solution has the lower free energy and
represents the stable state.



G=N,Ga+NgGg +RT(NAINN,+NgInNg)

2 g
g 8,370 -
]
D Free energy
K=} e I " of solution
5 _
£ 6,280 5 e »
3 g | g |
- 3 | | §
g 0 1 | ! 0
s 1 1 ~ 0.25 050 075 pd Free energy
0 500 K ~ - Ma - d ot miing
e —— e
Temperature X =3000 — ~3000

At 500K temperature

Table 10.2 Data for Computing the Entropy of Mixing Contribution
to the Free Energy of an Ideal Solution

Atom Fraction, RT(N,In N, + Ngln Np)
N, (N,In N, + NyIn Np) . for Temperature 500 K
0.00 0.000 000 J/mol
0.10 —0.325 -1,351
0.20 —0.500 —-2,079
0.30 —0.611 —2,540
0.40 ' —0.673 —2,798
0.50 —0.690 —2,868
0.60 —0.673 —2,798
0.70 —0.611 | —2,540
0.80 —0.500 —-2,079
0.90 ‘ —0.325 —1,351

1.00 —0.000 ‘ 000




Two-component
systems
o p

-- two phases binary systems

e Two-component (A, B) systems containing two
phases (a, B)

a phase: NYdG, + NZdGg =0

0.86dG 54 +0.14dGg, =0

S phase: N#dG, + N£SdGg =0 0.050Gpq +0.95dG¢, =0
» Restrictive equations: restricts the values of 086dG.. _ =~
the mole fractions of the components in the A9 O'l4dCiC“
solutions. 0.05dG,y  —0.95dGe,
. Ex. 0.05 0.95
o phase 3 phase Which means that at a constant temperature
Nag =086 N, =005 and a constant pressure there can be no
Ney =014 Ng, =095 change in the partial-molal free energies

when the two phases are in equilibrium.



Graphical determinations of partial-molal free

eneraies
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Free energy

Free energy

=3

Free energy of alpha phase

Free energy of beta phase/’1

o
LY

oAt constant pressure and temp.
the compositions of the phases are
fixed.

eThe partial-molal free energies of
each component be the same in
both phases at equilibrium.
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Two-components systems with three phases in equilibrium

In two-component systems, three
phases in equilibrium occur only under
constant temp., pressure, and
compositions.

Ex. Three-phase reaction: Cu-Ag alloy
phase diagrams
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Table 10.3 Types of Three-Phase Transformations that Can Occur in Binary Systems

Phase B

Nature of the Phase Transformation

Phase C

Type of |
Transformation Phase A
Eutectic Liquid
Eutectoid Solid Solution
Peritectic Liquid Solution
Monotectic Liquid Solution

= Solid Solution
= Solid Solution
+ Solid Solution
= Liquid Solution

+ Solid Solution
+ Solid Solution
= Solid Solution
+ Solid Solution

90

00
Cu



Pressure

o

Phase rule
P+E=C+2

Table 10.4 The Relative Number of Phases
and Degrees of Freedom in One- and Two-

Temperature

Solid phase Component Systems
_ w
Liquid phase Number of Number of Degrees of
Components Phases Freedom
C P F
1 1 2(T, P)
______ r ——— 40 1 2 I(TOI'P)
| oo’ 1 3 0
H ey ‘ 2 1 3(T, P, N, or Ng)
B> : : Gaseous phase 2 2 2(T, P)
! | 2 3 1(T or P)
T 2 4 0

A single-component phase diagram



Ternary phase
diagram

The vertical axis is temperature
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Crystaitine Phases

Si0, Notation Oxide Formula
1723 Cristobalite .
Si0
i Tridymite } 2
Fayalite 2Fe0-8i0,
Wustite "FeQ"
/ P / Hercynite FeQ-Al,04
/// DDO Corundum Al>03
. A 1210° Mullite 3A1,05-25i0,
/ 1200 Iron Cordierite 2Fe0-2Al,05'58iC
%’30 Temperatures up to approximately 1550°
/1 are on the Geophysical Laboratory
| folefay ,\‘\, Scale; those above 1550° C are on the
1948 International Scale,
Iron cordierite

2F808102
1205° 3A1,04-28i0,

~1850°




